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Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gase
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In this paper, using extended thermodynamics, we build up a nonlinear theory for a dilute nonviscous gas
under heat flux. The fundamental fields are the density, the velocity, the internal energy density, and the heat
flux. The constitutive theory is builtup without approximations. We single out the nonlinear complete expres-
sions of the Gibbs equation and of the nonequilibrium pressure. In particular, we determine the complete
expressions furnished by the theory for the nonequilibrium pressure tensor and thermodynamic pressure, i.e.,
the derivative of the nonequilibrium internal specific entropy with respect to the specific volume, times the
nonequilibrium temperature. In a second-order approximation these expressions are identical with those ob-
tained in Phys. Rev. E51, 158 ~1995!, using information theory.
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I. INTRODUCTION

The behavior of materials in the presence of high val
of heat flux has, in recent years, been the object of m
investigations. Extended thermodynamics~ET! @1,2# has
been a tool used very frequently in these studies. As is w
known, this theory chooses some dissipative fluxes as fun
mental fields in addition to the traditional fields of classic
thermodynamics. We can say that some fluxes, e.g., the
flux, must be chosen as independent fields when their ev
tion times are comparable to the evolution times of the c
sical variables, i.e., density, velocity, and temperature. M
materials require the use of the heat flux as an indepen
variable for their description: superfluids, hydrodynamic
models for the charge transport inside semiconductors,
drodynamics of phonons, and photons, plasmas, ultrarela
istic fluids, etc.~see the bibliography in Refs.@1–3#!.

Sometimes, in the description of materials where the h
flux must be considered as an independent variable, the
proximation of nonviscous fluid may be useful. In classic
thermodynamics the absence of viscosity amounts to se
the shear and bulk viscosity coefficients equal to zero.
extended thermodynamics, to assume that a fluid is non
cous means to set equal to zero the evolution times of
nonequilibrium part of the pressure tensor~both trace and
deviator!. The two definitions are essentially equivalent
long as a linear theory is considered, but this is not true
from equilibrium.

In this paper we investigate the behavior, far from eq
librium, of a dilute gas whose evolution time of the heat fl
is high, while the evolution time of the stress deviator
zero. We will use as fundamental fields the densityr, the
velocity v i , the internal energy densityE, and the heat flux
qi . We will study in detail the expression, far from equilib
rium, of the thermodynamic pressurep, defined as the de
rivative of specific entropy with respect to specific volum
times the temperature. In classical thermodynamics, the p
sure, as the entropy, depends only on the equilibrium qu
tities, i.e., temperature and density, and coincides with
scalar partp of the stress tensorpi j :

p5T
]h0

]V
5

1

3
pll 5p. ~1.1!
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On the contrary, in extended thermodynamics, owing to
lacking of local equilibrium, entropy depends also on t
fluxes, and with it also the thermodynamic pressure do
Furthermore, the thermodynamic pressure is no longer e
to the scalar part of the stress tensor.

In Ref. @4# Diminguez and Jou, drawing inspiration from
the form of the pressure tensor widely used for anisotro
radiation, suggest that the thermodynamic pressurep, ob-
tained as the derivative of the generalized specific entr
h5h(r,E,q2) with respect to the specific volume times th
nonequilibrium temperatureu, is linked to the pressure ten
sor through the relation

pi j 5pd i j 1aqiqj . ~1.2!

As a consequence, they suggest the following relation
tweenp andp:

p2p52 1
3 aq2, ~1.3!

where the quantitya must be intended as the coefficient
the off-diagonal terms in the expression of the stress ten
However, as the authors themselves observed, expres
~1.3! is not in complete accord with the microscopic theo
in fact, in the case of a dilute gas under heat flux, in
second-order approximation, using information theory, th
obtain the following different result:

p2p52
5

9
aq2. ~1.4!

This relation has been questioned by Nettleton in Ref.@5#.
Successively, Dominguez-Cascante and Faraudo@6# recon-
sider the problem, providing a new physical basis for t
term proportional toq2 in the pressure, and recalling th
necessity of an understanding of this kind of expression i
thermodynamic framework.

In this paper, this question is further analyzed using
nonlinear thermodynamic theory with eight fields, able
describe a nonviscous gas in the presence of high heat
In particular, we will determine the complete expressio
furnished by the theory for the nonequilibrium pressure t
sor and thermodynamic pressure.
©2001 The American Physical Society02-1
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This investigation not only has a conceptual interest, bu
may also have practical interest for systems with high h
flux, as it happens, for instance, in astrophysical plasmas
fact, inside the stars, the energy flux can be extremely h
and the value ofp may differ considerably from its equilib
rium counterpartp. Because in astrophysical plasmas the
must be a tradeoff between the force of pressure and
force of gravity, the dependence of the pressure on the
flux may significantly modify the field equations.

The plan of this paper is the following: In Sec. II th
mathematical consequences of the hypothesis of nonvis
ity for an ideal gas are analyzed and the constitutive the
for a set of eight fundamental fields is built up without a
proximations. In Sec. III the complete nonequilibrium e
pressions of the chemical potential, thermodynamic press
and Gibbs equation are written. The results obtained
compared in Sec. IV with those obtained using the inform
tional approach@4#; in a second-order approximation we o
tain complete equivalence.

II. EXTENDED THERMODYNAMICS OF A NONVISCOUS
DILUTE GAS

In ET, the behavior of a dilute gas is described by t
following balance equations:

]rA

]t
1

]rAk

]xk
5PA ~A5 . . . ,i ,i j ,i jk , . . . !, ~2.1!

where rA are the moments of various order of the pha
density of the kinetic theory of gases@7#, rAk are the fluxes
of the fieldsrA , which are just the moments of successi
order, andPA are the productions that take into account bo
the effect of external forces and of the collisions.
ld
b
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In ET of ideal and real gases, the central moments
often chosen as independent fields instead of complete
ments. Denoting withf the phase-density function, withm
the atomic mass, withui the velocity, and withci the pecu-
liar velocity, the total and the central momentsr i jkl andr̂ i jkl
are defined as

r i jkl 5E muiujukul f dc, r̂ i jkl 5E mcicjckcl f dc.

~2.2!

In particular,r is the mass density,r i5rv i the momentum
density,r i j the momentum flux density, andr i j j the energy
flux density.

In the following we will denote withpi j the stress tenso
r̂ i j ; with E5 1

2 pll the internal energy density, withp^ i j & the
deviatoric part of the stress tensorpi j , and withqi5

1
2 r̂ l l i the

heat flux. We will suppose also the gas in an inertial fra
and in the absence of external forces; as a consequenc
mass, momentum, and energy-conservation laws we ob
P50, Pi50, Pj j 50.

Let us now suppose that the gas is nonviscous. In a re
work @8#, it was shown that, under the only hypothesis th
the entropy is a convex function of the field variables, w
can formulate a nonlinear theory, able to describe the beh
ior of a nonviscous gas even in the presence of highly n
linear phenomena, which takes onlyr, v i , E, andqi as in-
dependent fields. In Ref.@8# it has been shown that th
evolutions equations for these fundamental fields can be
ily obtained, solving the first 13 balance equations~2.1! with
respect to the material derivatives of the central mome
and neglecting the evolution equation of the stress devi
p^ i j & , we obtain
5
ṙ1r

]vk

]xk
50

r v̇ i1
]pik

]xk
50

Ė1E
]vk

]xk
1

]qk

]xk
1pik

]v i

]xk
50

q̇i1qi

]vk

]xk
1qk

]v i

]xk
1 r̂ i jk

]v j

]xk
1

1

2

]r̂ i j jk

]xk
2

3

2r
p( i j

]pj )k

]xk
5

1

2
P̂il l .

~2.3!
ob-
y-

py
The constitutive equations for the nonfundamental fie
p^ ik& , r̂ i jk , and r̂ i j jk , as a consequence of the material o
jectivity principle, can be expressed in the form

pi j 5
2
3 Ed i j 1a~r,E,q2!q^ iqj & , ~2.4!

r̂ i jk5 2
5 ~qid jk1qjdki1qkd i j !1x~r,E,q2!q^ iqjqk& ,

~2.5!
s
-

r̂ i j jk 5b~r,E,q2!d ik1n~r,E,q2!q^ iqk& . ~2.6!

As we see, in this theory, the trace of the stress 3p is linked
to the internal energy densityE by the relation 3p52E.

Further restrictions on these constitutive relations are
tained imposing the validity of the entropy principle, appl
ing the Liu method of Lagrange multipliers@9#. This method
requires the existence of a scalar functionh and a vector
function Fk of the fundamental fields, namely, the entro
2-2
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density and the entropy flux density, respectively, such
the following inequality is satisfied for arbitrary fieldsr, v i ,
E, andqi :

ḣ1h
]vk

]xk
1

]Fk

]xk
2L̂F ṙ1r

]vk

]xk
G2L̂ iF v̇ i1

1

r

]pik

]xk
G

2L̂EF Ė1E
]vk

]xk
1

]qk

]xk
1pik

]v i

]xk
G2l̂ iF q̇i1qi

]vk

]xk

1qk

]v i

]xk
1 r̂ i jk

]v j

]xk
1

1

2

]r̂ i j jk

]xk
2

3

2r
p~ i j

]pj )k

]xk

2
1

2
P̂il l G>0. ~2.7!

In this inequality,h5h(r,E,q2) and Fk5f(r,E,q2)qk
are objective functions of the fundamental fields. The qu
tities L̂, L̂ i , L̂E , andl̂ i are the nonconvective parts of th
Lagrange multipliers, which are also objective functions,
that we can writeL̂5L̂(r,E,q2), L̂ i5L̂v(r,E,q2)qi , L̂E

5L̂E(r,E,q2), andl̂ i5l̂q(r,E,q2)qi .
The constitutive theory is obtained substituting Eq

~2.4!–~2.6! in Eq. ~2.7! and imposing that the coefficients o
all derivatives must vanish. In particular, imposing that t
coefficients of the time derivatives are equal to zero,
obtain

L̂v50, ~2.8!

dh5L̂dr1L̂EdE1l̂ idqi . ~2.9!

Imposing that zero as the coefficients of space derivative
velocity vanish, we obtain

h2rL̂2L̂E~E1p!2l̂qq250, ~2.10!

aL̂E1l̂q

913xq2

5
50. ~2.11!

In particular, for the pressure tensorpi j , from Eq.~2.11! we
obtain

pi j 5pd i j 2
l̂q

L̂E

913xq2

5
q^ iqj &. ~2.12!

Now, we introduce the following quantity:

u5
1

L̂E~r,E,q2!
, ~2.13!

which, near equilibrium, can be identified with the loc
equilibrium absolute temperatureT. Some authors@1,10,11#
have proposed that the quantityu is the absolute temperature
which is actually measured in nonequilibrium states inst
of T. In the following we will choose as a fundamental fie
the quantityu, instead of the internal energy densityE. In
accord with Ref.@1#, we will call u ‘‘nonequilibrium tem-
06120
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-

o
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perature.’’ Using this quantity, the physical meaning of t
constitutive functions appearing in this section can be be
investigated.

III. NONEQUILIBRIUM CHEMICAL POTENTIAL AND
NONEQUILIBRIUM PRESSURE

As observed in Refs.@3,4#, in nonequilibrium thermody-
namics, as in classical thermodynamics, the entropy mus
expressed in terms of extensive variables in order to b
thermodynamic potential. Now, we observe that the varia
Ji5Vqi ~whereV is the specific volume! is extensive in the
following sense: if we have two systems of volumeV1 and
V2 crossed by the same heat fluxqi , the variableVqi is
additive, i.e.,Vtotqi5V1qi1V2qi , althoughqi itself is not ad-
ditive @3#.

In this section, therefore, we will study the nonequili
rium Gibbs equations using the quantityJi5Vqi as an inde-
pendent variable, rather than the heat flux. We consider
~2.9!; using the variablesr, u, and Ji , and introducing the
quantity

m52u~L̂1l̂ iJi !, ~3.1!

Eq. ~2.9! can be written as

dh5
1

u
@dE2m dr1rl̂ i dJi #. ~3.2!

Consequently, the quantitym can be interpreted as a non
equilibrium chemical potential.

Now, denoting withe the specific energy, withh the non-
equilibrium specific entropy and remembering relati
~2.10!, the nonequilibrium chemical potentialm can be writ-
ten in the following way:

m5e2uh1
p

r
1ul̂ iJi . ~3.3!

As we see, the nonequilibrium chemical potential is
longer expressed by the quantitye2uh1(p/r), but it con-
tains an additional term proportional, at the lowest order
the square of the heat flux. Introducing the quantity

p5p1ulqq2, ~3.4!

relation ~3.3! can be written in the following way:

m52uL̂5e2uh1
p

r
. ~3.5!

As we see, in this expression the equilibrium temperaturT
is substituted, as expected, by the nonequilibrium temp
tureu, while the pressure is substituted by the termp, which
is the sum of the scalar partp of the stress tensor and of
term proportional to the Lagrange multiplier of the fieldqi .

In order to single out the physical meaning of this ter
we consider again the entropy density differentialdh, fur-
nished by Eq.~3.2!; using expression~3.3! of m, we obtain
2-3
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u dh5de1p dV1ul̂ i dJi . ~3.6!

This relation is a generalization to processes far from eq
librium of the Gibbs equation of thermostatics. From th
equation we conclude that, in a stationary and adiabatic
cess (dJi50, dh50), as a consequence of a change of v
ume, not only the equilibrium pressure, but the whole qu
tity p, which is the sum ofp and ofulqq2, contributes to the
change of internal energy. We can call the quantityp, in
accord with Ref.@4#, the nonequilibrium thermodynami
pressure. In a stationary nonequilibrium process, in wh
dJi50, the influence of the termulqq2 in the expression of
p ought to be evidenced.

We conclude this section determining the relation b
tween the quantityp and the functionsp anda, which appear
in the expression of the stress tensor. Using relations~2.11!
and ~3.4! we obtain

p2p5ulqq252
5

913xq2 aq2. ~3.7!

IV. MICROSCOPIC INTERPRETATION AND
CONCLUDING REMARKS

In this section, in order to obtain a microscopic interp
tation of the results obtained in this paper, we briefly rec
the application made in Ref.@4# of the information theory to
a dilute gas under heat flux.

According to the information theory, if a given number
momentsrA of the phase densityf are known, the distribu-
tion function f max, which can be used to evaluate the u
knowns moments off, corresponds to the maximum of th
entropy functional subject to macroscopic constraints, wh
consist just of the known moments.

In the case of a nonviscous ideal gas the constraints
the quantitiesE andqi , which are the mean values defined
Eq. ~2.2! of the microscopic quantitiesm(c2/2) and
mci(c

2/2):

E5^m~c2/2!&, ^mci~c2/2!&. ~4.1!

Further, we must impose the additional constraint that
mean of the peculiar velocity is zero:

05^ci&. ~4.2!
s
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The application of the maximum entropy principle yields
the following expression, approximate to the second ord
for the distribution functionf @4#:

f max5
1

Z
expF2L̃E

1

2
mc2G

3H 12l̃ iciS 1

2
mc22

5

2L̃E
D

1
1

2
~ l̃ ici !

2S 1

2
mc22

5

2L̃E
D 2J . ~4.3!

In Ref. @4#, approximated to the second order inqi , for
the pressure tensorpi j and for the thermodynamical pressu
p, the following expressions are found:

pi j 5pF S 12
6

25

m

p2kBT
q2D d i j 1

18

25

m

p2kBT
qiqj G ,

~4.4!

p5p2
2

5

m

pkBT
q2; ~4.5!

hence, we obtain

p2p52 5
9 aq2. ~4.6!

Inspection of Eqs.~4.6! and ~3.7! shows that, to the secon
order in the heat flux, these equations are identical.

We conclude this paper by observing that if, using info
mation theory, we do not choose the stress deviator a
constraint, this implies, at the macroscopic level, the hypo
esis that the considered gas is nonviscous. In fact, in
case, the evolution time of the stress deviatorp^ i j & goes to
zero and, as shown in Ref.@8#, when the values ofr, E, and
qi are known, the value ofp^ i j & cannot be chosen indepen
dently, but must satisfy the relation obtained requiring th
its production is zero.
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