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Thermodynamic pressure in nonlinear nonequilibrium thermodynamics of dilute nonviscous gases
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In this paper, using extended thermodynamics, we build up a nonlinear theory for a dilute nonviscous gas
under heat flux. The fundamental fields are the density, the velocity, the internal energy density, and the heat
flux. The constitutive theory is builtup without approximations. We single out the nonlinear complete expres-
sions of the Gibbs equation and of the nonequilibrium pressure. In particular, we determine the complete
expressions furnished by the theory for the nonequilibrium pressure tensor and thermodynamic pressure, i.e.,
the derivative of the nonequilibrium internal specific entropy with respect to the specific volume, times the
nonequilibrium temperature. In a second-order approximation these expressions are identical with those ob-
tained in Phys. Rev. B1, 158(1995, using information theory.
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I. INTRODUCTION On the contrary, in extended thermodynamics, owing to the
lacking of local equilibrium, entropy depends also on the

The behavior of materials in the presence of high valuedluxes, and with it also the thermodynamic pressure does.
of heat flux has, in recent years, been the object of man§¥urthermore, the thermodynamic pressure is no longer equal
investigations. Extended thermodynami@sT) [1,2] has to the scalar part of the stress tensor.
been a tool used very frequently in these studies. As is well |n Ref.[4] Diminguez and Jou, drawing inspiration from
known, this theory chooses some dissipative fluxes as fundahe form of the pressure tensor widely used for anisotropic
mental fields i.n addition to the traditional fields of classical radiation, Suggest that the thermodynamic pressur@b_
thermodynamics. We can say that some fluxes, e.g., the hegfined as the derivative of the generalized specific entropy

f!ux, must be chosen as independent figlds \_Nhen their evoluﬁ: 7(p,E,q?) with respect to the specific volume times the
tion times are comparable to the evolution times of the clas:

. : . . ; nonequilibrium temperaturé, is linked to the pressure ten-
sical variables, i.e., density, velocity, and temperature. Many, , through the relation
materials require the use of the heat flux as an independen?
variable for their description: superfluids, hydrodynamical pij =3, +aqq;. (1.2
models for the charge transport inside semiconductors, hy-
drodynamics of phonons, and photons, plasmas, ultrarelativas a consequence, they suggest the following relation be-
istic fluids, etc.(see the bibliography in Reff1-3]). tween and p:

Sometimes, in the description of materials where the heat
flux must be considered as an independent variable, the ap- T—p=—3a0’, (1.3
proximation of nonviscous fluid may be useful. In classical
thermodynamics the absence of viscosity amounts to settinghere the gquantitya must be intended as the coefficient of
the shear and bulk viscosity coefficients equal to zero. Irthe off-diagonal terms in the expression of the stress tensor.
extended thermodynamics, to assume that a fluid is nonvigdowever, as the authors themselves observed, expression
cous means to set equal to zero the evolution times of thé€l.3) is not in complete accord with the microscopic theory:
nonequilibrium part of the pressure tengboth trace and in fact, in the case of a dilute gas under heat flux, in a
deviatoy. The two definitions are essentially equivalent assecond-order approximation, using information theory, they
long as a linear theory is considered, but this is not true fapbtain the following different result:
from equilibrium.

In this paper we investigate the behavior, far from equi- m—p=— §aq2 (1.4)
librium, of a dilute gas whose evolution time of the heat flux 9 " '
is high, while the evolution time of the stress deviator is
zero. We will use as fundamental fields the dengitythe This relation has been questioned by Nettleton in Ref.
velocity v;, the internal energy densify, and the heat flux Successively, Dominguez-Cascante and Fardédaecon-
qi . We will study in detail the expression, far from equilib- sider the problem, providing a new physical basis for the
rium, of the thermodynamic pressure defined as the de- term proportional tog® in the pressure, and recalling the
rivative of specific entropy with respect to specific volume necessity of an understanding of this kind of expression in a
times the temperature. In classical thermodynamics, the pre§iermodynamic framework.
sure, as the entropy, depends only on the equilibrium quan- In this paper, this question is further analyzed using a
tities, i.e., temperature and density, and coincides with th@onlinear thermodynamic theory with eight fields, able to

scalar parp of the stress tensqy;; : describe a nonviscous gas in the presence of high heat flux.
In particular, we will determine the complete expressions
ZT@Z } _ (1.1) furnished by the theory for the nonequilibrium pressure ten-
=1y ~3Pi=h ' sor and thermodynamic pressure.
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This investigation not only has a conceptual interest, butit In ET of ideal and real gases, the central moments are
may also have practical interest for systems with high heabften chosen as independent fields instead of complete mo-
flux, as it happens, for instance, in astrophysical plasmas. Iments. Denoting withf the phase-density function, witim
fact, inside the stars, the energy flux can be extremely highthe atomic mass, with; the velocity, and wittc; the pecu-
and the value ofr may differ considerably from its equilib- liar velocity, the total and the central momeptg, andpijy
rium counterparp. Because in astrophysical plasmas thereare defined as
must be a tradeoff between the force of pressure and the

force of gravity, the dependence of the pressure on the heat
flux may significantly modify the field equations. pijklzf mu;u;uu;fdc, i)ijk|=J mcc;cc fdc.
The plan of this paper is the following: In Sec. Il the (2.2

mathematical consequences of the hypothesis of nonviscos-
ity for an ideal gas are analyzed and the constitutive theorY . . Lo
n particular,p is the mass densityy;= pv; the momentum

for a set of eight fundamental fields is built up without ap- density,p;; the momentum flux density, ang; the energy
proximations. In Sec. lll the complete nonequilibrium ex- flux derllglijty ' )

pressions of the chemical potential, thermodynamic pressure, In the following we will denote withp;; the stress tensor

and Gibbs equation are written. The results obtained are with E= L. the internal enerav density. Wit the
compared in Sec. IV with those obtained using the informa£ii ° ~ 2P 9 Y, Withyij)

iatori ithg.- = 47
tonal approacii] in a second-order approximation we ob- pE% L FET B L8 2L Eed B Al rame
tain complete equivalence. ' Pp 9

and in the absence of external forces; as a consequence of
mass, momentum, and energy-conservation laws we obtain
Il. EXTENDED THERMODYNAMICS OF A NONVISCOUS P=0 P.=0 P.=0

s DT Y P T Y

DILUTE GAS Let us now suppose that the gas is nonviscous. In a recent

In ET, the behavior of a dilute gas is described by thework [8], it was shown that, under the only hypothesis that
following balance equations: the entropy is a convex function of the field variables, we
can formulate a nonlinear theory, able to describe the behav-
ior of a nonviscous gas even in the presence of highly non-
linear phenomena, which takes onlyv;, E, andg; as in-
dependent fields. In Ref8] it has been shown that the
where p, are the moments of various order of the phaseevolutions equations for these fundamental fields can be eas-
density of the kinetic theory of gas€g], pax are the fluxes ily obtained, solving the first 13 balance equati¢24) with
of the fieldsp,, which are just the moments of successiverespect to the material derivatives of the central moments,
order, andP, are the productions that take into account bothand neglecting the evolution equation of the stress deviator

Ipa  Ipak
7+8_)(|(_PA (A= ... L,ij,ijk,...), (22

the effect of external forces and of the collisions. Py, we obtain
|
r ot p kg
PP
., 9Pik
pu; T (9_)(k:0
{ 2.3
E+Eav"+aqk &Ui—o
X ax  PRox
. avk &l)i R &UJ 1 &ﬁljjk 3 apj)k 1.
i+ 00— + OQ— + Ppik—+ = — —Pii——= 5 Pu-
\ gi Qi X, qk&Xk p']k(9Xk 2 X, 2p Pij X, 2 Pin

The constitutive equations for the nonfundamental fields ﬁijijﬁ(P,E,qz) St V(P:anz)q<iqk>- (2.6)

Py » Pijk » @ndpijj , as a consequence of the material ob-

jectivity principle, can be expressed in the form As we see, in this theory, the trace of the strepssSlinked
to the internal energy density by the relation p=2E.

(2.4) Further restrictions on these constitutive relations are ob-
tained imposing the validity of the entropy principle, apply-
ing the Liu method of Lagrange multiplief8]. This method

Pijk =5 (0 O+ 1 5ki+qk5i1)+x(p,E,q2)q<iqjqk>, requires the existence of a scalar functiorand a vector

function &, of the fundamental fields, namely, the entropy

pij= §E5ij +a(p,E,q2)C1<qu'> ,
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density and the entropy flux density, respectively, such thaperature.” Using this quantity, the physical meaning of the

the following inequality is satisfied for arbitrary fielgsv; , constitutive functions appearing in this section can be better
E, andq; : investigated.
hap 0k, —k—A[p P J k} Ao 1 9P lil. NONEQUILIBRIUM CHEMICAL POTENTIAL AND
X X J 7 poax NONEQUILIBRIUM PRESSURE
- v Iy il . duy As observed in Refd.3,4], in nonequilibrium thermody-
—Ag B+ Ea_xk+ e Pikox, N qi+qi(9_xk namics, as in classical thermodynamics, the entropy must be
expressed in terms of extensive variables in order to be a
N @+ . @+ 1 07l3ijjk_ i 9Py thermodynamic potential. Now, we observe that the variable
q'<,9xk p'lkaxk 2 dx, 2p Paij Xy J;i=Vq; (whereV is the specific volumeis extensive in the
following sense: if we have two systems of voluivige and
-~ Ef:x ~0 2.7) V, crossed by the same heat flgx, the variableVg; is
2 = ' additive, i.e.,VioG=V,q+ V.0 , althoughg; itself is not ad-
ditive [3].
In this inequality,h=h(p,E,q%) and ®,= ¢(p,E,q?)0y In this section, therefore, we will study the nonequilib-

are objective functions of the fundamental fields. The quanrium Gibbs equations using the quantity=Vgq; as an inde-
tities A, A;, Az, andX; are the nonconvective parts of the pendent variable, rather than the heat flux. We consider Eq.
Lagrange multipliers, which are also objective functions, so2.9); using the variablep, 6, andJ;, and introducing the
that we can writeA=A(p,E,q?), A;=A,(p,E,q)q,, Ag  guantity

=Ae(p.E,q%), and\;=\y(p,E,q%)q; .

The constitutive theory is obtained substituting Egs.
(2.4—(2.6) in Eq. (2.7 and imposing that the coefficients of
all derivatives must vanish. In particular, imposing that the
coefficients of the time derivatives are equal to zero, we

. 1 ~
obtain dh=5[dE—,udp+p)\idJi]. (3.2

w=—0(A+X\J), (3.0

Eqg. (2.9 can be written as

A,=0, (2.9 . :
Consequently, the quantity can be interpreted as a non-

equilibrium chemical potential.

Now, denoting withe the specific energy, withy the non-
quilibrium specific entropy and remembering relation
2.10, the nonequilibrium chemical potential can be writ-

ten in the following way:

dh=Adp+AdE+\dq; . (2.9

Imposing that zero as the coefficients of space derivatives
velocity vanish, we obtain

h—pA—Ae(E+p)—1q9°=0, (2.10 0
—e—0n+—+0ONJ;. 3.3
i i 9+3XC]2 M n P iJi ( )
algthg——=0. (2.1

As we see, the nonequilibrium chemical potential is no
longer expressed by the quantity- 67+ (p/p), but it con-
tains an additional term proportional, at the lowest order, to
the square of the heat flux. Introducing the quantity

In particular, for the pressure tensay, from Eq.(2.11) we
obtain

Aq 9+3x0? B
p”:pﬁu_/,\\_qTquw (212 7T_p+0)\qq21 (34)
E
relation (3.3) can be written in the following way:
Now, we introduce the following quantity:

~ T
1 M=—0A=6—6)n+;. (3.5

0= (2.13

AE(p!E!qz) i i i .

As we see, in this expression the equilibrium temperaiure
which, near equilibrium, can be identified with the local is substituted, as expected, by the nonequilibrium tempera-
equilibrium absolute temperatufie Some author§l,10,1]  ture 6, while the pressure is substituted by the tetrpwhich
have proposed that the quantitys the absolute temperature, is the sum of the scalar paptof the stress tensor and of a
which is actually measured in nonequilibrium states insteaderm proportional to the Lagrange multiplier of the fiejd
of T. In the following we will choose as a fundamental field In order to single out the physical meaning of this term,
the quantity g, instead of the internal energy densly In  we consider again the entropy density differental fur-
accord with Ref[1], we will call 8 “nonequilibrium tem-  nished by Eq(3.2); using expressiof3.3) of u, we obtain
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9dn=de+mdV+ on. dJ . (3.6) The application of the maximum entropy principle yields to
e the following expression, approximate to the second order,
This relation is a generalization to processes far from equifor the distribution functiorf [4]:

librium of the Gibbs equation of thermostatics. From this
equation we conclude that, in a stationary and adiabatic pro- foo 1 exd — X imcz
cess (1J,=0, d5»=0), as a consequence of a change of vol- max Es

ume, not only the equilibrium pressure, but the whole quan-
tity 7, which is the sum op and ofa)\qqz, contributes to the ~ 1 5
change of internal energy. We can call the quantiyin X1 1=NiG; EmCZ_T
accord with Ref.[4], the nonequilibrium thermodynamic 2Ag
pressure. In a stationary nonequilibrium process, in which 1 1 5 \2
dJ=0, the influence of the terrfi\ ,q° in the expression of T —(Xici)z(—mcz— _) ] _ 4.3
7 ought to be evidenced. 2 2 A

We conclude this section determining the relation be-

Ag

tween the quantityr and the functionp anda, which appear In Ref. [4], approximated to the second orderdp, for
in the expression of the stress tensor. Using relati@nkl)  the pressure tensgr; and for the thermodynamical pressure
and(3.4) we obtain , the following expressions are found:
) 5 , ol 6 m 54 18 m
(4.4)
IV. MICROSCOPIC INTERPRETATION AND 2 m
CONCLUDING REMARKS T=P— g pk_-l—qz; (4.5
B

In this section, in order to obtain a microscopic interpre-
tation of the results obtained in this paper, we briefly recall
the application made in Reff4] of the information theory to m—p=—3Sac?. (4.6)

a dilute gas under heat flux.

According to the information theory, if a given number of Inspection of Eqs(4.6) and (3.7) shows that, to the second
momentsp, of the phase densitfyare known, the distribu- order in the heat flux, these equations are identical.
tion function f,,,,, Which can be used to evaluate the un- We conclude this paper by observing that if, using infor-
knowns moments of, Corresponds to the maximum of the mation theory, we do not choose the stress deviator as a
entropy functional subject to macroscopic constraints, whictgonstraint, this implies, at the macroscopic level, the hypoth-
consist just of the known moments. esis that the considered gas is nonviscous. In fact, in this

In the case of a nonviscous ideal gas the constraints aease, the evolution time of the stress devigtgy, goes to
the quantitie€ andq; , which are the mean values defined in zero and, as shown in R¢B], when the values of, E, and
Eq. (2.2 of the microscopic quantitiesm(c?/2) and @i are known, the value ab;, cannot be chosen indepen-
mc (c?/2): dently, but must satisfy the relation obtained requiring that

its production is zero.

hence, we obtain

E=(m(c?%/2)), (mg(c?/2)). (4.1
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